Rational Chebyshev Approximations for the Error Function
نویسندگان
چکیده
منابع مشابه
Rational Chebyshev Approximations for Fermi-Dirac Integrals of Orders
Rational Chebyshev approximations are given for the complete Fermi-Dirac integrals of orders — \, \ and f. Maximal relative errors vary with the function and interval considered, but generally range down to 10~9 or less.
متن کاملSeries of Error Terms for Rational Approximations of Irrational Numbers
Let pn/qn be the n-th convergent of a real irrational number α, and let εn = αqn−pn. In this paper we investigate various sums of the type ∑ m εm, ∑ m |εm|, and ∑ m εmx m. The main subject of the paper is bounds for these sums. In particular, we investigate the behaviour of such sums when α is a quadratic surd. The most significant properties of the error sums depend essentially on Fibonacci nu...
متن کاملError Bounds for Lanczos Approximations of Rational Functions of Matrices
Having good estimates or even bounds for the error in computing approximations to expressions of the form f(A)v is very important in practical applications. In this paper we consider the case that A is Hermitian and that f is a rational function. We assume that the Lanczos method is used to compute approximations for f(A)v and we show how to obtain a posteriori upper and lower bounds on the `2-...
متن کاملRational Approximations for Values of Derivatives of the Gamma Function
The arithmetic nature of Euler’s constant γ is still unknown and even getting good rational approximations to it is difficult. Recently, Aptekarev managed to find a third order linear recurrence with polynomial coefficients which admits two rational solutions an and bn such that an/bn converges subexponentially to γ, viewed as −Γ′(1), where Γ is the usual Gamma function. Although this is not ye...
متن کاملChebyshev diagrams for rational knots
We show that every rational knot K of crossing number N admits a polynomial parametrization x = Ta(t), y = Tb(t), z = C(t) where Tk(t) are the Chebyshev polynomials, a = 3 and b + degC = 3N. We show that every rational knot also admits a polynomial parametrization with a = 4. If C(t) = Tc(t) is a Chebyshev polynomial, we call such a knot a harmonic knot. We give the classification of harmonic k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1969
ISSN: 0025-5718
DOI: 10.2307/2004390